
AFRL-SN-WP-TP-2003-109

JAZZ: AN EXTENSIBLE ZOOMABLE
USER INTERFACE GRAPHICS
TOOLKIT IN JAVA

Benjamin B. Bederson
Jon Meyer
Lance Good

2000

2000 ACM

This work is copyrighted. The United States has for itself and others acting on its behalf
an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of
use is subject to copyright restrictions.

SENSORS DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7318

Approved for public release; distribution is unlimited.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204,
Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

2000 Conference Paper
5a. CONTRACT NUMBER

F33615-97-1-1018
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

JAZZ: AN EXTENSIBLE ZOOMABLE USER INTERFACE GRAPHICS
TOOLKIT IN JAVA

5c. PROGRAM ELEMENT NUMBER
62301E

5d. PROJECT NUMBER

ARPA
5e. TASK NUMBER

AA

6. AUTHOR(S)

Benjamin B. Bederson
Jon Meyer
Lance Good

5f. WORK UNIT NUMBER

 1P
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Maryland
Human-Computer Interaction Lab
Institute for Advanced Computer Studies, Computer Science Department
College Park, MD 20742

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

AFRL/SNAR

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Sensors Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7318

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

AFRL-SN-WP-TP-2003-109

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
Published in UIST 2000, ACM Symposium on User Interface Software and Technology, CHI Letters, 2(2), pp. 171-180.

2000 ACM. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up,
nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions.

See other published work in the DTIC collection under contract number F33615-97-1-1018.

This report contains color.
14. ABSTRACT (Maximum 200 Words)
In this paper we investigate the use of scene graphs as a general approach for implementing two-dimensional (2D) graphical
applications, and in particular Zoomable User Interfaces (ZUIs). Scene graphs are typically found in three-dimensional (3D)
graphics packages such as Sun’s Java3D and SGI’s OpenInventor. They have not been widely adopted by 2D graphical user
interface toolkits.
To explore the effectiveness of scene graph techniques, we have developed Jazz, a general-purpose 2D scene graph toolkit. Jazz is
implemented in Java using Java2D, and runs on all platforms that support Java 2. This paper describes Jazz and the lessons we
learned using Jazz for ZUIs. It also discusses how 2D scene graphs can be applied to other application areas.
15. SUBJECT TERMS

Zoomable User Interfaces (ZUIs), Animation, Graphics, User Interface Management Systems (UIMS), Pad++, Jazz

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES

16 Jason Johnson
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-5668 x4047
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

CHI Letters vol 2, 2 171

Jazz: An Extensible Zoomable User Interface
Graphics Toolkit in Java

Benjamin B. Bederson, Jon Meyer, Lance Good

Human-Computer Interaction Lab
Institute for Advanced Computer Studies, Computer Science Department

University of Maryland, College Park, MD 20742
+1 301 405-2764

{bederson, meyer, goodness}@cs.umd.edu

ABSTRACT
In this paper we investigate the use of scene graphs as a
general approach for implementing two-dimensional (2D)
graphical applications, and in particular Zoomable User
Interfaces (ZUIs). Scene graphs are typically found in
three-dimensional (3D) graphics packages such as Sun’s
Java3D and SGI’s OpenInventor. They have not been
widely adopted by 2D graphical user interface toolkits.

To explore the effectiveness of scene graph techniques, we
have developed Jazz, a general-purpose 2D scene graph
toolkit. Jazz is implemented in Java using Java2D, and runs
on all platforms that support Java 2. This paper describes
Jazz and the lessons we learned using Jazz for ZUIs. It also
discusses how 2D scene graphs can be applied to other
application areas.

Keywords
Zoomable User Interfaces (ZUIs), Animation, Graphics,
User Interface Management Systems (UIMS), Pad++, Jazz.

INTRODUCTION
Today’s Graphical User Interface (GUI) toolkits contain a
wide range of built-in user interface objects (also known as
widgets, controls or components). These GUI toolkits are
excellent for building hierarchical organizations of standard
widgets such as buttons, scrollbars, and text areas.
However, they fall short when the developer needs to
create application-specific widgets. Developers typically
write these application-specific widgets by subclassing an
existing widget and overriding methods to define new
functionality. However, GUIs have become more
sophisticated, and the level of functionality needed to
implement a new GUI widget has increased. Beyond
writing the code to draw the widget, the developer must
also write code to handle events, drag and drop, selection,
layout, keyboard navigation, keyboard focus highlighting,
tool tips, context sensitive help, popup menus, accessibility,
internationalization, animated scrolling, and so on.
Implementing a fully functional application-specific widget
is a daunting task.

We believe that a significant problem with existing 2D user
interface toolkits is that they follow a “monolithic” design
philosophy. That is, they use a relatively small number of
classes to provide a large amount of functionality. As a
result, the classes tend to be complex and have large
numbers of methods, and the functionality provided by
each class is hard to reuse in new widgets.

To address code reuse, toolkit developers usually place
generally useful code in a top-level class that is inherited
by all of the widgets in the toolkit. There are several
drawbacks to this approach. Firstly, it leads to a very
complex hard-to-learn top-level class. (In Microsoft MFC,
the top-level CWnd class has over 300 methods. The Java
Component class has over 160 methods. Even Java Swing,
a relatively new toolkit with a modern design, has a top
level JComponent class with over 280 methods). Secondly,
application developers are forced to accept the functionality

Figure 1: Screen snapshot of the HiNote
application program, written using Jazz.

 Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST ’00. San Diego, CA USA
 2000 ACM 1-58113-212-3/00/11... $5.00

wallacjr
1

CHI Letters vol 2, 2 172

provided by the toolkit’s top-level class – they can not add
their own reusable mechanisms to enhance the
toolkit. Many researchers create their own custom toolkit
so that they can have complete control over the capabilities
of widgets in their application.

For several years, we have been investigating Zoomable
User Interfaces (ZUIs), which use zooming as a principal
method of navigation. ZUIs have a number of unique
requirements, such as the need for "semantic zooming"
where more detail is displayed as the scene is zoomed in,
and the need for multiple views of the same scene at
different magnifications. In practice, implementing a
general purpose widget for supporting ZUI applications is
very hard [7].

In this paper, we report on our experiences developing
Jazz1. Jazz is a new toolkit for developing ZUI
applications. It can also be used to build many other kinds
of 2D widgets.

Unlike prior GUI toolkits, Jazz is based on a “minilithic”
design philosophy. In Jazz, functionality is delivered not
through class inheritance but rather by composing a
number of simple objects within a scene graph hierarchy.
These objects are frequently non-visual (e.g. layout nodes),
or serve to “decorate” nodes beneath them in the scene
graph with additional appearance or functionality (e.g.
selection nodes). Jazz therefore tackles the complexity of a
graphical application by dividing object functionality into
small, easily understood and reused node types. Those
nodes can be combined to create powerful applications.
The base ZNode class in Jazz has under 60 public methods
(16 are related to events, 16 are related to the scenegraph
structure, 8 are related to coordinates, and the rest are for
other functions such as painting, saving, properties, and
debugging.)

We believe that minilithic scene graphs are an important
mechanism for supporting custom 2D application widgets
in general, and ZUIs in particular. While zooming has been
one of our motivations for building Jazz, we think that its
simple model will prove useful for non-zooming
applications as well. In particular, we believe that Jazz’s
combination of extensibility, object orientation,
hierarchical structure, and support for multiple
representations will simplify the task of writing many
application-specific 2D widgets.

In this paper, we first describe the unique requirements of
ZUIs that led us to create Jazz. We outline related work and

1 The name Jazz is not an acronym, but rather is motivated
by the new music-related naming conventions that the Java
Swing toolkit started. In addition, the letter 'J' signifies the
Java connection, and the letter 'Z' signifies the zooming
connection.
Jazz is open source software according to the Mozzilla
Public License, and is available at:
http://www.cs.umd.edu/hcil/jazz

discuss the architecture of Jazz. We show how Jazz
supports adding functionality by composition, and describe
some applications we have built using Jazz. We conclude
by describing some of our experiences building the Jazz
toolkit, and outline future work.

REQUIREMENTS FOR ZUIS
Zoomable User Interfaces are a kind of information
visualization application. They display graphical
information on a virtual canvas that is very broad and has
very high resolution. A portion of this huge canvas is seen
on the display through a virtual "camera" that can pan and
zoom over the surface.

ZUIs have unique requirements beyond those supported by
standard 2D GUI toolkits. We list some of the
requirements for the kinds of ZUIs we want to build below.
Although these requirements reflect the complex nature of
ZUIs, many non-zooming application-specific widgets
have similar requirements:

1) The ZUI must provide support for custom
application graphics that may be non-rectangular
or transparent, as well as traditional interactive
widgets such as buttons and sliders.

2) Large numbers of objects must be supported so
that rendering and interaction performance doesn't
degrade with complex scenes.

3) Objects must support arbitrary transforms and
hierarchical grouping.

4) View navigations (pans and zooms) should be
smooth and continuously animated.

5) Multiple representations of objects must be
supported so that objects can be rendered
differently in different contexts, for example, at
different scales.

6) Multiple views onto the surface should be
supported, both as different windows, and within
the surface to be used as "portals" or "lenses".

7) Objects must be able to be made "sticky" so they
stay fixed in one spot on the screen when the view
changes. This is similar to a heads-up-display
(HUD).

8) It must be possible to write interaction event
handlers that provide for user manipulation of
individual elements, and groups of objects.

The Jazz platform supports all of these requirements.

RELATED WORK
The influential InterViews framework [18] supports
structured graphics and user interface components. Fresco
[26] was derived from InterViews and unifies structured
graphics and user interface widgets into a single hierarchy.
Both Fresco and later versions of InterViews support
lightweight glyphs and a class hierarchy structure similar to
Jazz. However, these systems do not support large scene
graphs well, or handle multiple views onto the scene graph.

wallacjr
2

CHI Letters vol 2, 2 173

They also do not support advanced visualization techniques
such as fisheye views and context sensitive objects. Jazz
adds new node types to the scene graph to support these
additional features.

A number of 2D GUI toolkits provide higher-level support
for creating custom application widgets, or provide support
for structured graphics. The Tk Canvas [17] for example
supports object-oriented 2D graphics, though it has no
hierarchies or extensibility. Amulet [19] is a toolkit that
supports widgets and custom graphics, but it has no support
for arbitrary transformations (such as scaling), semantic
zooming, and multiple views.

The GUI toolkit that perhaps comes closest to meeting the
needs of ZUIs is SubArctic [16]. It is typical of other GUI
toolkits in that it is oriented towards more traditional
graphical user interfaces. While SubArctic is innovative in
its use of constraints for widget layout and rich input
model, it has a monolithic design. In addition, it does not
support multiple cameras or arbitrary 2D transformations
(including scale) on objects and views.

None of these 2D GUI toolkits adopt a scene graph
structure that integrates structured graphics with user
interface widgets. They are all implemented with a
monolithic design. So, while it may have been possible to
extend an existing toolkit to add support for zooming, it
would not have been possible to pursue a minilithic design
that we felt was also an important research goal.

It is possible to build ZUI applications using existing 3D
scene graph tools, such as OpenInventor [5]. That may
work from a structural standpoint. However, we would
then be restricted to using a 3D renderer. That is
problematic because 3D renderers do not support 2D
business graphics or standard user interface widgets well.
 import javax.swing.*;
import edu.umd.cs.jazz.*;
import edu.umd.cs.jazz.util.*;
import edu.umd.cs.jazz.component.*;

public class HelloWorld extends JFrame {

 public HelloWorld() {
 // Set up basic frame
 setBounds(100, 100, 400, 400);
 ZCanvas canvas = new ZCanvas();
 getContentPane().add(canvas);
 setVisible(true);

 // Add some sample text
 ZText text = new ZText("Hello World!");
 ZVisualLeaf leaf = new ZVisualLeaf(text);
 canvas.getLayer().addChild(leaf);
 }

 public static void main(String args[]) {
 HelloWorld app = new HelloWorld();
 }
}

Figure 2: Complete Jazz “Hello World!” program
that supports panning and zooming.

Typical 3D renderers, such as OpenGL, support very
efficient image and triangle rendering, but do not have
direct support for high quality scalable fonts, 2D complex
polygons, line styles, and other standard business graphics.
We have discussed these issues in depth previously [7]. We
are also interested in developing scene graph nodes that
apply to 2D application domains. For this domain, many of
the nodes found in 3D scene graph systems are not
appropriate.

There are several prior implementations of Zoomable User
Interfaces toolkits. These include the original Pad system
[20], and more recently Pad++ [6, 7, 8], as well as other
systems [13, 21][22], and a few commercial ZUIs that are
not widely accessible [3, 4, 23; Chapter 6].

All of these previous ZUI systems are implemented in
terms of a hierarchy of objects, and are therefore
superficially similar to Jazz. However, like GUI toolkits,
they all use a monolithic class structure that places a large
amount of functionality in a single top-level “Node” class.
For example, in Pad++, the top-level Pad_Object class
has 235 methods, and supports fading, culling, spatial
indexing, stickiness, layering, etc. We needed a cleaner and
more flexible approach.

THE JAZZ TOOLKIT
Jazz is a new general-purpose toolkit for creating ZUI
applications using zooming object-oriented 2D graphics.
Jazz is built entirely in Java and runs on all platforms that
support Java 2.

Jazz uses the Java2D renderer, and is organized to support
efficient animation, rapid screen updates, and high quality
stills. While we could have written Jazz using other
rendering engines, such as OpenGL, we picked Java2D
because of its clean design and focus on high-quality 2D
graphics. As previously mentioned, OpenGL does not
support business graphics well. In addition, using Java2D
allows us to support embedded Swing widgets, which
would be impossible with OpenGL.

Jazz borrows many of the structural elements common to
3D scene graph systems, such as Sun's Java3D [1] and
SGI's OpenInventor [5]. By using a basic hierarchical scene
graph model with cameras, Jazz is able to directly support a
variety of common as well as forward-looking interface
mechanisms. This includes hierarchical groups of objects
with affine transforms (translation, scale, rotation and
shear), layers, zooming, internal cameras (portals), lenses,
semantic zooming, and multiple representations.

Figure 2 shows a complete standalone Jazz program that
displays "Hello World!" where the user can pan and zoom
the view. Default navigation event handlers let the user
pan

with the left mouse button, and zoom with the right mouse
button by dragging right or left to zoom in or out,
respectively. Note that Jazz automatically updates the
portion of the screen that has been changed, so no manual
repaint calls are needed.

wallacjr
3

CHI Letters vol 2, 2 174

The Jazz design follows standard 3D scene graph practices,
segregating functionality into separate, non-visual grouping
nodes. This approach leads to a modular scene graph
design. Jazz has an extensible visual and interaction policy.
It comes with a small set of visual objects and a well-
defined mechanism for applications to define their own.
Similarly, Jazz supports default selection, navigation, and
other interaction mechanisms, but they are also designed to
be modifiable by applications.

Why a 2D Scene graph?
Most application-specific widgets are built using custom
data structures to support that particular application, rather
than using a generic toolkit. While this approach works, it
involves re-implementing many common operations from
application to application. A scene graph architecture, on
the other hand, provides a general-purpose reusable
solution for many common operations. However this
solution has costs as well. Let us look at some of the
tradeoffs that come with the use of a scene graph in
comparison to a custom application.

Advantages of a scene graph:

• Handles Complexity: Scene graphs scale nicely, and
handle complex scenes well.

• Abstraction: Scene graphs decouple the components
of the system, making it easier to improve the renderer,
switch to different hardware, make platform-specific
tweaks transparently, etc.

• Reusability: Scene graphs allow novice programmers
to use professionally implemented algorithms, and to
avoid implementing many common features.

• Interactivity: Scene graphs make it easier to
implement things like selection and picking.

• Reuse: Scene graphs make it easy to reuse data in
multiple places.

Disadvantages:

• Footprint: A general solution such as a scene graph
will likely use more memory than a custom solution.

• Efficiency: It is typically more efficient to write a
custom solution than to use a general-purpose scene
graph. Bradley found that a toolkit-based solution to an
Othello game ran 19 times slower than a handcrafted
solution, and consumed 18 times more memory [27].

• Restrictions: Even with the most open-ended designs,
a scene graph is likely to place some restrictions on the
application, which may be avoidable with a custom
solution.

ARCHITECTURE
Jazz is based on three primary concepts: nodes, visual
components, and cameras. Figure 3 shows the object
hierarchy of Jazz’s public objects that applications use.
Figure 4 shows the object structure of a typical application
with several objects and a camera.

Nodes and Visual Components
The Jazz scene graph consists of a hierarchy of nodes that
represent relationships between objects. The base node
type (ZNode) is very simple. There are more complex
node types, whose features are only paid for when used.
Hierarchies of nodes can be used to implement “groups”
and “layers” that are found in most drawing programs, and
to facilitate moving a collection of objects together.

ZSceneGraphObject

jazz

ZNode

jazz.component

ZCoordList

ZImage

ZPolyline

ZRectangle

ZVisualComponent

ZGroup ZLeaf

 0 .. n

ZPolygon

ZText ZDrawingSurface
 1

ZSwing

ZCamera

ZVisualLeaf

ZAnchorGroup

ZRoot

ZFadeGroup

ZLayerGroup

ZSelectionGroup ZLayoutGroup

ZTransformGroup

ZConstraintGroup

ZStickyGroup

ZVisualGroup

 1 .. n

 2

 0..n

ZInvisibleGroup

Figure 3: The Object hierarchy of Jazz.

ZEllipse

ZShape

wallacjr
4

CHI Letters vol 2, 2 175

Scene graph nodes have no visual appearance on the
screen. Rather, there are special objects, called visual
components, which are attached to certain nodes in a scene
graph (specifically to visual leaf nodes and visual group
nodes), and which define geometry and color attributes.

In other words, nodes establish where something is in the
scene graph hierarchy, whereas visual components specify
what something looks like. All nodes have a single parent,
and follow a strict tree hierarchy. Visual components can
be reused – the same visual component can appear in
multiple places in the scene graph, and thus have multiple
parents.

There is a clear separation between what is implemented in
a node and what is handled by a visual component. Nodes
contain all object characteristics that are passed on to child
nodes. For example, nodes are used to provide affine
transforms (for translating, rotating, scaling, and shearing
child nodes), culling sub-trees according to magnification,
and defining transparency for groups of objects. Each of
these characteristics modifies all of that node's descendants.

Visual components are purely visual. They do not have a
hierarchical structure (they do not even specify a
transformation). Each visual component simply specifies
how to render itself, what its bounds are, and how to pick it
(i.e. how to detect if the mouse is over the component).

This split between nodes and visual components clearly
separates code that is aware of the scene graph hierarchy
from code that operates independently of any hierarchy. It
enables hierarchical structuring of scene graph nodes, and
also reuse of visual components. It also separates the
structure from the content. Visual components are
interchangeable, making it possible to, say, replace all the
circles w/ squares in a sub-tree of the scene graph without
affecting the grouping or position of objects.

Cameras
A camera is a visual component that displays a view of a
Jazz scene graph. It specifies which portion of the scene
graph is visible using an affine transform. Multiple cameras

can be setup looking at a single scene graph, each defining
its own view of the scene graph.

Drawing Surfaces vs. Internal Cameras
Cameras are usually mapped to a drawing surface. This
encapsulates a Java Graphics2D class, which supports
2D rendering. The drawing surface is usually associated
with a Jazz canvas, so that the user can see the surface on
their display. The Jazz canvas is implemented as a Java
Swing component, so ZUI interfaces can be embedded in
any Swing application, wherever a Swing JComponent
widget is expected. The Graphics2D of a drawing
surface can also output to an off-screen buffer, or a printer.
With this mechanism, a Jazz surface can be used to display,
print, or to render into a buffer so an application can grab
the pixels that were rendered.

In addition to being mapped to drawing surfaces, cameras
can also be treated just like any other visual component –
they can be embedded in a Jazz scene graph, so that nested
views of a zoomable surface can be embedded recursively
in a scene. Cameras used in this way are called internal
cameras, and act like nested windows within the world that
themselves look onto the world, or onto a different world
(in previous ZUI implementations, we called these
"portals" [25].)

Layers
Each camera contains a list of layer nodes specifying which
layers in the scene graph it can see. A camera renders itself
by first rendering its background, and then rendering all the
layers in its layer list. This approach lets an application
build a single very large scene graph and control which
portion of the scene graph are visible in each camera.

Layers can be made temporarily invisible within a specific
camera by removing it from the camera's layer list.
Alternatively, a special node type called an “invisible
group” node can be inserted into the scene graph to make
all the children of a layer invisible. Changing the order of
the layer nodes within a camera’s layer list changes the
drawing order of entire layers.

ZRoot

ZLayerGroup

ZGroup

ZDrawingSurface

ZPolyline

ZVisualLeaf

ZPolyline

ZVisualLeaf ZVisualLeaf

ZCamera

ZVisualLeaf

ZRectangle

Figure 4: Run-time object structure in a typical application.
This scene contains a single camera looking onto a layer
that contains a rectangle and a group consisting of two
polylines.

wallacjr
5

CHI Letters vol 2, 2 176

Rendering
Nodes are rendered in a top-to-bottom, left-to-right depth
first fashion. Consequently, visual components are
rendered in the order that their associated nodes appear in
the scene graph. Changing the order of a node within a
parent node will change the rendering order of the
associated visual component.

Culling
All scene graph objects include a method to compute their
bounding rectangle. Jazz uses this to decide which objects
are visible, and thus avoid rendering or picking objects that
are not visible in a given view. Bounds are cached at each
node in the current relative coordinate system. Objects that
regularly change their dimensions can specify that their
bounds are volatile. This tells Jazz not to cache their
bounds, and instead to query the object directly every time
the bounds are needed to make a visibility decision.

Events
Jazz supports interaction through Java’s standard event
listener model. An event listener is an object that responds
to events. They may be attached to any node in the Jazz
scene graph. There are two categories of events – input
events and object events. Input events result from user
interaction with a graphical object, such as a mouse press.
Object events result from a modification to the scene graph,
such as a transformation change, or a node insertion. All
events can be handled by attaching listeners to scene graph
nodes. There can be multiple listeners per node. Unlike the
standard Swing and AWT listener model, in Jazz by default
each input event is passed up the tree to the listeners on
ancestor nodes. However, if a listener consumes the event,
the event is not passed on any further. With this
mechanism, custom event listeners may be written for
specific nodes that correspond to graphical items – or a
listener may be attached higher in the scene graph tree,
which then provides interaction support for the entire
subtree below the listener. Event listeners can be written in
either a specific or very general manner depending on the
application's needs.

Jazz dispatches all mouse events to the node (and
potentially its ancestors) returned by a pick operation at the
location of the original mouse event on the Jazz drawing
surface. Before dispatching the event, Jazz modifies the
event records to reflect the local coordinates of the picked
component. Visual component event handlers can therefore
work in their local coordinate system.

Jazz comes with event handlers for several basic tasks,
such as navigation, selection, and hyperlinks. Applications
are free to use these or define their own.

COMPOSING FUNCTIONALITY USING NODE TYPES
A basic design goal of Jazz is to maintain a decoupled
design so that different features do not depend on each
other and so that applications only pay for features when
they use them. This led us to keep the core ZNode very
simple, and to add extra features by introducing new node
types which are inserted into the scene graph as needed.

For instance, since not all nodes will be transformed, the
core node type does not contain a transform. Instead, a
transform node is created when needed and inserted above
any node that should be transformed.

Developers are encouraged to achieve complex
functionality by composing simple node types in a scene
graph rather than by using subclassing and inheritance.

To validate the practicality of this idea for ZUIs, we have
developed a number of Jazz node types, each implementing
a specific functionality suitable for ZUI applications, and
each remaining small and manageable. In this section we
discuss some of the node types we have created.

Jazz includes nodes to support layers, selections,
transparency, hyperlinks, fading, spatial indexing, layout,
and constraints. In this section we discuss some of these
node types.

Selection and Hyperlink Nodes
Some node types associate extra characteristics with a
portion of the scene graph. These extra nodes act as
"decorators" following a standard object oriented design
pattern [15]. They wrap the core functions of the nodes
below them, adding extra functionality. For example, we
have written a Jazz selection decorator node that draws its
children, and then draws a selection box with resize
handles.

Similarly, Jazz defines a link node, which is used to create
spatial hyperlinks. The link node associates the destination
of a spatial hyperlink with a node, but does so without
modifying the node and without the node’s knowledge.
When the user moves the mouse over a link node, it
presents an arrow visual component to show what the link
refers to. Clicking on the link navigates the camera to the
linked object.

Position and Layout Nodes
The position and scale of objects is specified in Jazz by
inserting transformation nodes into the hierarchy. Active
layout managers can also be utilized by inserting a layout
node into the hierarchy. We have developed a layout node
that uses a layout manager analogous to the Java AWT and
Swing layout managers. Layout managers can be inserted
at different levels of the scene graph, yielding hierarchical
layouts. Applications may define new layout managers, or
use one of the built-in layouts. Currently, Jazz has two
layout managers: a hierarchical tree layout manager, which
will layout any subtree of the scene graph in a standard tree
structure, and a path layout manager, which will position a
set of nodes along any path. The hierarchical tree layout
manager is interesting in that it shows lines indicating the
linkages between nodes in the tree using a special visual
component.

Constraint Nodes
We have developed nodes that use dynamic constraints to
position their children. Currently we use these constraint
nodes to implement “sticky objects” – portions of the scene
graph that are associated with a particular camera and that

wallacjr
6

CHI Letters vol 2, 2 177

do not move when the camera viewpoint is changed.
Sticky nodes subclass a constraint node that contains a
transform. They modify the transform by setting it to the
inverse of a specified camera’s view transform whenever
the camera’s view changes. The subtree rooted at the sticky
constraint node then does not move as the viewpoint
changes. It is as if they are stuck to the camera’s lens.

Culling Nodes
A basic characteristic of zoomable applications is that there
can be a large number of objects in a given scene graph,
many of which are not visible in a given view of the graph.
For example, in a zoomed-in view, only very small objects
are visible, whereas in a zoomed-out view, only large
objects need be shown. Thus, it is important to efficiently
traverse the scene graph, culling invisible objects.
Sometimes simple bounds-based culling is not sufficient.
We have developed two additional mechanisms to support
culling. First, "fade" groups can be inserted in the scene
graph to cull a subtree when it appears larger or smaller
than a specified magnification in a view (fade groups use
alpha blending to smooth this transition - hence the name).
Second, a "spatial index" node can be inserted in the scene
graph to provide fast access to the visible children of that
node. The spatial index node implements an RTree index
[24] which is effective when there are many nodes, but
only a small percentage of them is visible at a given time.
This is quite common in ZUIs since this typically occurs
whenever the view is zoomed in.

CUSTOM VISUAL COMPONENTS
To define new visual components, applications extend the
visual component class and define two functions. The new
object defines how to paint itself and how big it is. In
addition, visual components may define picking methods if
the object is not rectangular, so Jazz knows when the
pointer is over the object.

Legacy Java Code
One of our motivations for splitting components and scene
graph nodes in two was to make it easy to import non-
zooming components and legacy applications into a
zooming context. In Jazz, visual components can be easily
defined to wrap legacy Java code that is written without
awareness of Jazz. Those components can then be zoomed
and interacted with by placing them in a scene graph. For
example, it is possible to take some pre-existing code that
draws a scatter plot and make it available as a Jazz visual
component on a zooming surface.

This technique has been used to wrap existing code in two
large systems. The first is a graphical simulation system
from a research group at Los Alamos National Labs. We
defined a new visual component that wrapped their core
visual component, and were able to place their entire
visualization inside of Jazz, complete with zooming and
multiple views and interaction in about half of a day. The
second was the LEIF system developed by DTAI [2]. This
is a large information framework system with a major
visualization component. With a similar technique, they

were able to wrap their core object type with a Jazz visual
component, and get their entire application to appear inside
of Jazz.

Swing Visual Components
Any lightweight Java Swing component can be embedded
into a Jazz scene graph by placing it in a Jazz ZSwing
visual component in the scene graph. The Swing
component can then be panned and zoomed like other Jazz
components. This means that fully functioning existing
Java Swing code with complete GUIs can be embedded
into a zooming surface, and mixed and matched with
custom graphics within Jazz. For example, a Swing
interface with a table and buttons could be placed on a
zooming surface and overlaid with an application-specific
visualization. The Swing components can be manipulated
in exactly the same way as other Jazz components,
including applying rotation, scale, transparency, and
multiple views. The embedded Swing integration occurs
transparently to the Swing widget and to other nodes in the
scene graph.

To implement embedded Swing widgets inside of Jazz, the
widgets’ input and output had to be remapped to
accommodate their transformed rendering. Mouse input in
Swing normally takes the pointer’s screen location directly
to the Swing component’s local coordinate system. This
mapping is not as straightforward since embedded Swing
widgets may be arbitrarily transformed. So the ZSwing
visual component registers listeners for mouse events, and
forwards any events it receives to the underlying Swing
component in its coordinate system.

Similarly, the ZSwing visual component must also alter
repaint requests made by Swing components embedded in
Jazz. These Swing repaint requests assume rendering in a
traditional GUI rather than one arbitrarily transformed.
The ZSwing visual component must reroute these repaints
through the Jazz scene graph, including multiple views, to
properly transform the Java Graphics2D object to be used
by the Swing component for rendering. Fortunately, all of
this remapping was done generically, and the Jazz code has
no knowledge of specific Swing widgets.

CREATING APPLICATION SPECIFIC WIDGETS
To test Jazz, we developed a number of prototypes of
application-specific widgets. These widgets explore various
aspects of ZUIs and general graphical application design.
In this section, we report briefly on these widgets.

Basic ZUI Application
To understand the requirements of ZUIs as well as the
structure of Jazz, we created a simple zoomable application
in Jazz. We built a graph editor (available as an applet on
the Jazz website) that lets users draw a graph with many
nodes that are connected by links. The links follow nodes
that the user moves. The user can draw very large graphs
and the view may be zoomed in or out on demand. Nodes
can be grouped. When zoomed out, these node groups fade
out and are replaced with a group node that represents an

wallacjr
7

CHI Letters vol 2, 2 178

abstraction of the elements of the group. Finally, to
support the user in understanding global context as well as
detail, multiple views can be brought up simultaneously
and the zoomed out views will show where the zoomed in
views are.

It is difficult to build this application using existing GUI
toolkits. GUI toolkits don’t directly support zooming,
multiple views, and multiple levels of information, so the
application would have to manage all of these details.
Building this application in Jazz was straightforward.

Since zooming, multiple levels of representation, and
multiple views are all directly supported by Jazz, writing
the graph drawing application was just a matter of adding
appropriate nodes to the scene graph for each element of
application. In addition, Jazz’s support for interaction
through event listeners makes it easy to add nodes and edit
the graph. Object change events are generated when an
object moves, so an event listener was attached to the nodes
in order to update the connecting arrows so they always
follow the nodes. Finally, Jazz takes care of screen
updates, hierarchical transforms, etc. which simplifies
application programming considerably.

Fisheye Views
The scene graph model in Jazz makes it easy to support
advanced graphical features. For instance, while Jazz
directly supports geometric zooming of entire scenes, it is
also possible to create "fisheye" visualizations where each
object is scaled according to some degree of interest
function [14].

We implemented a simple fisheye view in Jazz by putting a
special fisheye decorator node above every object that we
wanted the fisheye effect applied to. The fisheye node is
really just a special transform node that dynamically
computes its scale according to a function. Admittedly,
this is a simplified fisheye view, as entire objects are scaled
whole rather than being distorted.

Context Sensitive Objects
By default, Jazz objects support a single presentation style.
It is also desirable to be able to support multiple
representations of a single data model. That is, to support
different visual displays of objects in different contexts.

Applications can easily use Jazz to present different visual
representations of data in different circumstances. Many
different kinds of context can be used to influence how and
what gets drawn, so we sometimes call this technique
context-sensitive rendering. While an application can use
any context whatsoever to control an object’s rendering
(such as author, or time), two especially common contexts
are magnification (the size the object is rendered at) and
camera (the camera the object is being rendered within).
We sometimes use the more specific term semantic
zooming to refer to objects that change the way they appear
based on the current magnification. When an object appears
differently when viewed with different cameras, we
sometimes use the term lens or filter [6, 25].

Jazz’s standard visual components render themselves the
same way every time, except during interactions, when
they may render themselves at lower resolution for
efficiency. Applications can define new visual components
and nodes whose paint methods are context sensitive.

Standard software engineering approaches call for
decoupled representations. Each visual representation
should exist independently of the others. This allows the
application builder to design new representations, and
modify old ones without affecting the other representations.
A clean decoupled design would support different classes
for each visual representation of the data. One design that
accomplishes this is to make a special visual component
that acts as a Proxy [15] for another visual component, and
can delegate between them. A more elaborate delegation
scheme is described by Fox [12].

Such a delegator is fairly straightforward to build. It
maintains a list of ancillary visual components and exactly
one of them is active at a time. It then defines its paint,
and pick methods to call the active visual component.

We implemented a simple delegator as a proof-of-concept.
Our sample delegator supports semantic zooming by
selecting a specific visual component to render based on
the current magnification level. This approach has the
property of having decoupled visual representations while
keeping those representations together on the screen.
Because they are all controlled by a single node, moving
that node (by changing its transformation) moves each
zoom level’s representation together. Figure 5 shows the
basic structure of the scene graph for our delegator that
supports semantic zooming.

NODE MANAGEMENT
A drawback of the “minilithic” approach adopted by Jazz is
that it places a burden on the application programmer since
they must manage a scene graph containing many nodes
and node types. Adding a new element to a scene can take
several steps.

In practice there is typically a primary node that the
application cares about (usually the visual leaf node) and
then there are several decorator nodes above it. We have
implemented special support for managing these kinds of
scene graph structures, using the notion of scene graph
editor objects.

An editor instance can be created for any node on the scene
graph. It has methods for obtaining parents of the node that

Delegator

Rep 1 Rep 2 Rep 3

Figure 5: One way to implement semantic zooming in
Jazz. The Delegator chooses which representation
to use to paint itself depending on the current
magnification.

wallacjr
8

CHI Letters vol 2, 2 179

are of a specific type. It uses lazy evaluation to create those
parent nodes as they are required. Jazz maintains a special
bit in each node specifying if it is created by an editor.
With this structure, if an application wants to obtain a
transform node for a given node in the scene graph, it can
simply call:

node.editor().getTransformGroup().

If the node does not have a transform node associated with
it, a new transform node is created and inserted above the
node. Otherwise the existing transform node is returned.
The editor() method actually calls a factory [10] to
create the editor, so applications can define custom
mechanisms for editing nodes.

CURRENT STATUS
Everything described in this paper is currently implemented
in Java 2 and is publicly available as open source software.
Jazz is being actively used by a number of research groups,
has been used in university courses in and outside of the
University of Maryland, and is being used within two
commercial products currently being developed.

The Jazz distribution comes with a sample application
called HiNote that demonstrates some of the basic features.
In addition, we are currently building two other
applications. The first is a new version of KidPad [9, 11]
that provides collaborative storytelling tools for children,
available at http://www.cs.umd.edu/hcil/kidpad. The
second is an authoring tool for creating presentations. The
authoring tool builds on our experience making zoomable
presentations over the past several years. The authoring
tool works as a plug-in for Microsoft PowerPoint allowing
any existing presentation to be brought into a zoomable
space. This tool is not yet publicly available.

CONCLUSION
This paper describes the architecture of Jazz, a new Java
toolkit that supports the development of extensible 2D
object-oriented graphics with zooming and multiple
representations. It is a descendent from previous Zoomable
User Interfaces that we have built in the past.

While Jazz does not introduce many substantially new
individual ideas, it is novel in bringing together a variety of
techniques from different domains. Jazz takes scene graphs
from 3D graphics, screen and interaction techniques from
2D widgets, functionality from previous ZUI systems, and
puts these elements together with clean decoupled object
oriented design. Using Jazz, developers can write serious
zoomable applications and advanced visualizations with a
clarity and efficiency that has not been possible before.

The biggest contribution of Jazz is the creation of a
graphics toolkit built using a “minilithic” design. By
encouraging composition over inheritance, the Jazz feature-
set is highly decoupled. This makes the code easier to
maintain and extend compared with monolithic approaches.
We and others have used Jazz to build a variety of
applications. This proof by example demonstrates that the

approach has potential. There are, however, trade-offs with
any design, and the minilithic approach also has costs.

Our experience with Jazz so far shows us that the biggest
concerns with the Jazz design is ease-of-use and efficiency.
The downside of a minilithic approach is that the
application developer must manage many more objects
than with a more traditional design. While you only pay
for the features you use, you need a new node instance for
each feature. While we have attempted to minimize this
burden through the use of “editors”, the developer still has
to be aware of many node types.

Another basic issue is efficiency of a scenegraph-based
solution compared to an entirely custom solution. An
alternative to Jazz for some visualizations would be to
build a custom data structure representing the model, and
then to build a render method that simply walks through the
model, rendering the entire scene. This approach is simple
and very efficient. We believe that for simple applications,
that kind of custom implementation may be best. The
advantages of a scenegraph-based approach don’t appear
until the application requires features such as selection,
layers, fading, or spatial indexing. Once a number of these
features are required, the custom approach becomes very
tedious, and difficult to maintain. So, while we do not yet
have any quantitative data to inform a designer, it appears
that there is a threshold of complexity above which Jazz
provides more benefit than cost.

While we have not yet performed a rigorous quantitative
performance analysis, we and others have used Jazz for a
number of applications. We have consistently found that
its performance is good. The primary bottleneck appears to
be rendering large numbers of objects, and not the
overhead incurred by traversing and maintaining the
scenegraph.

We look forward to continuing the development of Jazz,
and increasing our understanding of the trade-offs of the
minilithic scenegraph design that we have chosen. As Jazz
is used for more projects, we will gain enough experience
to carefully analyze the construction of systems using Jazz,
and compare them to alternative approaches.

ACKNOWLEDGMENTS
We enjoyed our collaborations with those involved with
Pad++, especially Jim Hollan, Jason Stewart, Allison
Druin, Britt McAlister, George Furnas and Ken Perlin.

We would like to thank our fellow members of the HCIL,
especially the students in the seminar on ZUIs that had the
patience to use early versions of Jazz and helped to identify
its "features". Our thanks to Jim Mokwa and Maria Jump
for their contributions to Jazz. We greatly appreciate the
careful reading of earlier versions of this paper by Bay-Wei
Chang, Jason Stewart, and Allison Druin.

Most importantly, the many users of Jazz have helped us
design, debug, and understand the requirements of Jazz and
have made Jazz much more broadly useful than would have

wallacjr
9

CHI Letters vol 2, 2 180

been possible otherwise. Two important early users were
David Thompson at LANL and Mike Behrens at DTAI.

Finally, Bob Hummel and Ward Page at DARPA have
been instrumental in supporting this work, and Jazz
wouldn’t exist without their support. This work has been
funded in part by DARPA, and an equipment grant from
Sun Microsystems.

REFERENCES

1. Java [Web Page] (2000). URL
http://www.javasoft.com.

2. LEIF [Web Page] (2000). URL http://leif.dtai.com.

3. MerzCom [Web Page] (2000). URL
http://www.merzcom.com/.

4. Perspecta [Web Page] (2000). URL
http://www.perspecta.com/.

5. SGI OpenInventor [Web Page] (2000). URL
http://www.sgi.com/Technology/Inventor/.

6. Bederson, B. B., Hollan, J. D., Perlin, K., Meyer, J.,
Bacon, D., & Furnas, G. W. (1996). Pad++: A
Zoomable Graphical Sketchpad for Exploring
Alternate Interface Physics. Journal of Visual
Languages and Computing, 7, pp. 3-31.

7. Bederson, B. B., & Meyer, J. (1998). Implementing
a Zooming User Interface: Experience Building
Pad++. Software: Practice and Experience, 28(10),
pp. 1101-1135.

8. Bederson, B. B., Wallace, R. S., & Schwartz, E. L.
(1993). Control & Design of the Spherical Pointing
Motor. In Proceedings of IEEE International
Conference on Robotics and Automation (ICRA 93)
New York: IEEE,

9. Benford, S., Bederson, B. B., Åkesson, K.-P.,
Bayon, V., Druin, A., Hansson, P., Hourcade, J. P.,
Ingram, R., Neale, H., O'Malley, C., Simsarian, K.
T., Stanton, D., Sundblad, Y., & Taxén, G. (2000).
Designing Storytelling Technologies to Encourage
Collaboration Between Young Children. In
Proceedings of Human Factors in Computing
Systems (CHI 2000) ACM Press, pp. 556-563.

10. Booch, G. (1994). Object-Oriented Analysis and
Design With Applications. Addison-Wesley.

11. Druin, A., Stewart, J., Proft, D., Bederson, B. B., &
Hollan, J. D. (1997). KidPad: A Design
Collaboration Between Children, Technologists, and
Educators. In Proceedings of Human Factors in
Computing Systems (CHI 97) ACM Press, pp. 463-
470.

12. Fox, D. (1998). Composing Magic Lenses. In
Proceedings of Human Factors in Computing
Systems (CHI 98) ACM Press, pp. 519-525.

13. Fox, D. (1998). Tabula Rasa: A Multi-scale User
Interface System. Doctoral dissertation, New York

University, New York, NY.

14. Furnas, G. W. (1986). Generalized Fisheye Views.
In Proceedings of Human Factors in Computing
Systems (CHI 86) ACM Press, pp. 16-23.

15. Gamma, E., Helm, R., Johnson, R., & Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

16. Hudson, S. E., & Stasko, J. T. (1993). Animation
Support in a User Interface Toolkit. In Proceedings
of User Interface and Software Technology (UIST
93) ACM Press, pp. 57-67.

17. John K. Ousterhout. (1994). Tcl and the Tk Toolkit.
Addison-Wesley.

18. Linton, M. A., Vlissides, J. M., & Calder, P. R.
(1989). Composing User Interfaces With
InterViews. IEEE Software, 22(2), pp. 8-22.

19. Myers, B. A., McDaniel, R. G., Miller, R. C.,
Ferrency, A. S., Faulring, A., Kyle, B. D., Mickish,
A., Klimovitski, A., & Doane, P. (1997). The
Amulet Environment: New Models for Effective
User Interface Software Development". IEEE
Transactions on Software Engineering, 23(6), pp.
347-365.

20. Perlin, K., & Fox, D. (1993). Pad: An Alternative
Approach to the Computer Interface. In Proceedings
of Computer Graphics (SIGGRAPH 93) New York,
NY: ACM Press, pp. 57-64.

21. Perlin, K., & Meyer, J. (1999). Nested User Interface
Components. In Proceedings of User Interface and
Software Technology (UIST 99) ACM Press, pp. 11-
18.

22. Pook, S., Lecolinet, E., Vaysseix, G., & Barillot, E.
(2000). Context and Interaction in Zoomable User
Interfaces. In Proceedings of Advanced Visual
Interfaces (AVI 2000) ACM Press, p. (in press).

23. Raskin, J. (2000). The Humane Interface. Reading,
Massachusetts: Addison Wesley.

24. Samet, H. (1990). The Design and Analysis of
Spatial Data Structures. Addison-Wesley.

25. Stone, M. C., Fishkin, K., & Bier, E. A. (1994). The
Movable Filter As a User Interface Tool. In
Proceedings of Human Factors in Computing
Systems (CHI 94) ACM Press, pp. 306-312.

26. Tang, S. H., & Linton, M. A. (1994). Blending
Structured Graphics and Layout. In Proceedings of
User Interface and Software Technology (UIST 94)
ACM Press, pp. 167-174.

27. Zanden, B. T. V. (1994). Optimizing Toolkit-
Generated Graphical Interfaces. In Proceedings of
User Interface and Software Technology (UIST 94)
ACM Press, pp. 157-166.

wallacjr
10

